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We study the effects of quenched extended impurities on nonequilibrium phase transitions in the directed
percolation universality class. We show that these impurities have a dramatic effect: they completely destroy
the sharp phase transition by smearing. This is caused by rare strongly coupled spatial regions which can
undergo the phase transition independently from the bulk system. We use extremal statistics to determine the
stationary state as well as the dynamics in the tail of the smeared transition, and we illustrate the results by
computer simulations.
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In nature, thermal equilibrium is more of an exception
than the rule. In recent years, phase transitions between dif-
ferent nonequilibrium states have become a topic of great
interest. A prominent class of nonequilibrium phase transi-
tions separates active, fluctuating states from inactive, ab-
sorbing states where fluctuations cease entirely. These ab-
sorbing state transitions have applications ranging from
physics to chemistry and to biology[1–4]. The generic uni-
versality class for absorbing state transitions is directed per-
colation (DP) [5]. According to a conjecture by Janssen and
by Grassberger[6], all absorbing state transitions with a sca-
lar order parameter, short-range interactions, and no extra
symmetries or conservation laws belong to this class. Ex-
amples include the transitions in the contact process[7],
catalytic reactions[8], interface growth[9], and turbulence
[10]. However, despite its ubiquity in theory and simulations,
clearcut experimental realizations of the DP universality
class are strangely lacking[11]. The only verification so far
seems to be found in the spatiotemporal intermittency in fer-
rofluidic spikes[12].

A possible reason for this apparent discrepancy is the im-
purities, i.e., quenched spatial disorder. According to the
Harris criterion[13,14], the DP universality class is unstable
against disorder, because the(spatial) correlation length ex-
ponent n' violates the inequalityn'.2/d for all spatial
dimensionalitiesd,4. Indeed, in the corresponding field
theory, spatial disorder leads to runaway flow of the renor-
malization group(RG) equations[15], destroying the DP be-
havior. Several other studies[16–19] agreed on the instabil-
ity of DP against spatial disorder, but a consistent picture has
been slow to evolve. Recently, Hooyberghset al. applied the
Hamiltonian formalism[20] to the contact process with spa-
tial disorder [21]. Using the Ma-Dasgupta-Hu strong-
disorder RG[22] these authors showed that the transition(at
least for sufficiently strong disorder) is controlled by an ex-
otic infinite-randomness fixed point with activated rather
than the usual power-law scaling. In many real systems, the
disorder does not consist of point defects but of dislocations,
disordered layers, or grain boundaries. The effects of such
extended defects are generically stronger than that of uncor-
related disorder, as has been shown by detailed studies of
equilibrium systems ranging from the exactly solved
McCoy-Wu model[23] and several RG studies[24–27] to
the discovery of infinite-randomness critical behavior in the
corresponding quantum Ising model[28].

In this paper, we show that extended defects have an even
more dramatic effect on nonequilibrium phase transitions in
the DP universality class; they destroy the sharp transition by
smearing. This is caused by phenomena similar to but stron-
ger than the usual Griffiths effects[14,29]: rare strongly
coupled spatial regions can undergo the transition indepen-
dently of the bulk system. In the tail of the smeared transi-
tion, the spatial density distribution is very inhomogeneous,
with the average stationary density and the survival probabil-
ity depending exponentially on the control parameter. The
approach of the average density to this exponentially small
stationary value occurs in two stages, a stretched exponential
decay at intermediate times, followed by power-law behavior
at late times. In the following, we derive these results for a
disordered contact process, illustrate them by computer
simulations, and discuss their generality and importance.

Our starting point is the clean contact process[7], a pro-
totypical system in the DP universality class. It is defined on
a d-dimensional hypercubic lattice. Each siter can be vacant
or active, i.e. occupied by a particle. During the time evolu-
tion, particles are created at vacant sites at a rateln/ s2dd
wheren is the number of active nearest neighbor sites and
the creation ratel is the control parameter. Particles are an-
nihilated at unit rate. For smalll, annihilation dominates,
and the absorbing state without any particles is the only
steady state. For largel there is a steady state with finite
particle density(active phase). The two phases are separated
by a nonequilibrium phase transition in the DP universality
class atl=lc

0.
We introduce quenched spatial disorder by making the

creation ratel a random function of the lattice site. Extended
impurities can be described by disorder perfectly correlated
in dc dimensions, but uncorrelated in the remainingdr =d
−dc dimensions.l is thus a function ofr r, which is the
projection of the position vectorr on the uncorrelated direc-
tions. For definiteness, we assume that thelsr rd have a bi-
nary probability distribution

Pflsr rdg = s1 − pdd„lsr rd − l… + pd„lsr rd − cl…, s1d

wherep andc are constants between 0 and 1. In other words,
there are extended impurities of densityp where the creation
ratel is reduced by a factorc.
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Let us now consider the effects of rare disorder fluctua-
tions in this system. In analogy to the Griffiths phenomenon
[14,29], there is a small but finite probability for finding
large spatial regions devoid of impurities. These rare regions
can be locally in the active phase, even if the bulk system is
still in the inactive phase. For the largest rare regions this
starts to happen whenl crosses the clean critical pointlc

0.
Since the impurities in our system are extended, each rare
region is infinite indc dimensions but finite in the remaining
dr dimensions. This is a crucial difference from systems with
uncorrelated disorder, where the rare regions are finite. In our
system, each rare region can therefore undergo a real phase
transitionindependentlyof the rest of the system. Thus, those
rare regions that are locally in the ordered phase will have a
true nonzero stationary density, even if the bulk system is
still in the inactive phase.

The resulting global phase transition is very different
from a conventional continuous phase transition, where a
nonzero order parameter develops as a collective effect of
the entire system, accompanied by a diverging correlation
length in all directions. In contrast, in our system, the order
parameter develops very inhomogeneously in space with dif-
ferent parts of the system(i.e., differentr r regions) ordering
independently at differentl. Correspondingly, the correlation
length in the uncorrelated directions remains finite across the
transition. This defines a smeared transition. Thus, extended
impurities lead to a smearing of the DP phase transition.

We now use extremal statistics to derive the properties in
the tail of the smeared transition, i.e., in the parameter region
where a few active rare regions exist, but their density is so
small that they can be treated as independent. We start with
the stationary behavior. The probabilityw for finding a rare
region of linear sizeLr devoid of impurities is, up to preex-
ponential factors, given by

w , exps− p̃Lr
drd s2d

with p̃=−lns1−pd. As discussed above, such a region under-
goes a true phase transition to the active phase at some
lcsLrd.lc

0. According to finite-size scaling[30],

lcsLrd − lc
0 = ALr

−f, s3d

wheref is the clean(d-dimensional) finite-size scaling shift
exponent andA is the amplitude for the crossover from a
d-dimensional bulk system to a “slab” infinite indc dimen-
sions but finite indr dimensions. If the total dimensionality
d=dc+dr ,4, hyperscaling is valid andf=1/n' which we
assume from now on. Combining Eqs.(2) and(3) we obtain
the probability for finding a rare region which becomes ac-
tive at lc as

wslcd , expf− Bslc − lc
0d−drn'g s4d

for lc−lc
0→0+. HereB= p̃Adrn'. The total(average) density

r at a certainl is obtained by summing over all active rare
regions, i.e., all regions withlc,l. Since the functional
dependence onl of the density on any given active island is
of power-law type it does not enter the leading exponentials
but only the preexponential factors. Thus, the stationary den-
sity develops an exponential tail

rsld , expf− Bsl − lc
0d−drn'g s5d

reaching the clean critical pointlc
0. Analogous arguments

can be made for the survival probabilityPsld of a single
seed site. If the seed site is on an active rare region it will
survive with a probability that depends onl with a power
law. If it is not on an active rare region, the seed will die. To
exponential accuracy the survival probability is thus also
given by Eq.(5).

The local (spatial) density distribution in the tail of the
smeared transition is very inhomogeneous. On active rare
regions, the density is of the same order of magnitude as in
the clean system. Away from these regions it decays expo-
nentially. The typical local densityrtyp can be estimated from
the typical distance of any point from the nearest active rare
region. From Eq.(4) we obtain

r typ , expfBsl − lc
0d−drn'/drg. s6d

At this distance, the local density has decayed to

rtyp , e−r typ/j0 , exph− C expfBsl − lc
0d−drn'/drgj s7d

wherej0 is the bulk correlation length(which is finite and
changes slowly across the smeared transition) and C is a
constant. A comparison with Eq.(5) shows that the relation
between the typical and the average density is exponential,
ulogrtypu,r−1/dr, indicating an extremely broad local density
distribution.

We now turn to the dynamics in the tail of the smeared
transition. The long-time decay of the density is dominated
by the rare regions while the bulk contribution decays expo-
nentially. According to finite-size scaling[30], the behavior
of the correlation timejt of a single rare region of sizeLr in
the vicinity of the clean bulk critical point can be modeled by

jtsD,Lrd , Lr
szn'−z̃ñ'd/n'uD − ALr

−1/n'u−z̃ñ'. s8d

Here D=l−lc
0.0, z is the d-dimensional bulk dynamical

critical exponent, andñ' andz̃ are the correlation length and
dynamical exponent of adr-dimensional system. Let us first
consider the time evolution of the density atl=lc

0. For D
=0, the correlation time(8) simplifies tojt,Lr

z. To exponen-
tial accuracy, the time dependence of the average density is
obtained from

rstd , E dLr exps− p̃Lr
dr − Dt/Lr

zd s9d

where D is a constant. Using the saddle point method to
evaluate this integral, we find the leading long-time decay of
the density to be given by a stretched exponential,

ln rstd , − tdr/sdr+zd. s10d

For l.lc
0, we repeat the saddle point analysis with the

full expression(8) for the correlation length. For intermedi-
ate timest, tx,sl−lc

0d−sdr+zdn', the decay of the average
density is still given by the stretched exponential(10). For
times larger than the crossover timetx the system realizes
that some of the rare regions are in the active phase and
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contribute to a finite steady state density. The approach of the
average density to this steady state value is characterized by
a power law:

rstd − rs`d , t−c. s11d

The value ofc cannot be found by our methods since it
depends on the neglected preexponential factors.

We now illustrate the smearing of the phase transition by
the results of a computer simulation of a two-dimensional
(2D) contact process with linear defectssdc=dr =1d. To reach
the rather large system sizes necessary to observe exponen-
tially rare events, we consider a version of the contact pro-
cess with infinite-range couplings in the correlated direction
(parallel to the impurities) but nearest-neighbor couplings in
the uncorrelated direction(perpendicular to the defect lines).
While this infinite-range model will not be quantitatively
comparable to a short-range contact process, it provides a
simple example for the smearing mechanism. Moreover,
since the smearing relies only on a single rare region under-
going a true phase transition, we expect that the results will
qualitatively valid for a short-range contact process too(with
the appropriate changes to the exponents).

Because the couplings in the correlated direction are of
infinite range, this dimension can be treated exactly in mean-
field theory. This leads to a set of coupled local mean-field
equations for the local densitiesrx,

]

]t
rx = − rx +

lsxd
4

s1 − rxdsrx−1 + 2rx + rx+1d. s12d

These equations can easily be solved numerically. We study
systems with several dilutionsp=0.2, . . . ,0.6 and sizes of up
to L=106 in the uncorrelated direction; the impurity strength
is c=0.2 for all calculations.

To determine the stationary state we solve the equations
s] /]tdrx=0 in a self-consistency cycle. Our results are sum-
marized in Fig. 1. The top panel shows the total(average)
densityr for a cleansp=0d and a dirtysp=0.3d system. The
clean system has the expected sharp phase transition atl
=lc

0=1 with the mean-field critical exponentb=1. The data
of the disordered system seem to suggest a transition atl
<1.04. However, a closer inspection shows that the singu-
larity is smeared. Note that the density data are essentially
size independent. Therefore, the observed rounding cannot
be due to finite-size effects. We conclude that the smearing is
an intrinsic effect of the infinite system. For comparison with
the analytical prediction(5), the center panel shows the loga-
rithm of the total density as a function ofsl−lc

0d−1/2 for
different impurity concentrationsp. Note that in our infinite-
range modeln'=1/f=1/2. Thedata follow Eq.(5) over
several orders of magnitude inr. Fits of the data to Eq.(5)
are used to determine the decay constantsB. The bottom
panel of Fig. 1 shows that these decay constants depend lin-
early onp̃=−lns1−pd, as predicted.

To study the time evolution we numerically integrate the
local mean-field equations(12), starting from a homoge-
neous initial state withr=1. Figure 2 summarizes our results
for a system of sizeL=106 with dilution p=0.5. The main
panel shows a log-log plot of lnr vs t. This allows us to test

FIG. 1. Top: Overview of the steady state density of a clean
sp=0d and a dilutedsp=0.3d system. Center: Logarithm of the den-
sity as a function ofsl−lc

0d−1/2 for several dilutionsp andL=104.
The data are averages over 100 disorder realizations. The solid lines
are fits to Eq.(5) with drn'=1/2. Bottom: Decay constantB as a
function of −lns1−pd.

FIG. 2. Densityr vs. timet for a system of sizeL=106, dilution
p=0.5 and severall (averages over 25 disorder realizations). Solid
line: Fit of thel=1 datast.100d to Eq.(10) giving an exponent of
approx. 0.32. Inset: Approach to the steady state density forl
=1.01. Solid line: Fit of the data fort.100 to (11), giving an
exponent ofc<2.6.
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the stretched exponential behavior predicted in Eq.(10) for
the time dependence ofr at the clean critical couplingl
=lc

0=1. We find that the data indeed follow a stretched ex-
ponential with an exponent of approximately 0.32, in excel-
lent agreement with the analytical predictiondr / sdr +zd
=1/3. For l.lc

0, the decay initially follows the stretched
exponential, but eventually the density approaches its finite
steady state value. The inset of Fig. 2 shows a log-log plot of
rstd−rsteadyvs t. The data clearly display power-law behavior
in agreement with Eq.(11). A fit to this equation gives an
exponent value ofc<2.6.

To summarize, we have demonstrated that extended im-
purities destroy the sharp DP phase transition in the contact
process by smearing. In the remaining paragraphs we discuss
the generality of our findings as well as their relation to the
Griffiths effects[14,29]. The origins of Griffiths effects and
the smearing found here are very similar; both are caused by
rare large spatial regions that are locally in the ordered
phase. The difference between them is a result of disorder
correlations. For uncorrelated disorder, the rare regions are
of finite size and cannot undergo a true phase transition.
Instead, they fluctuate slowly. In contrast, if the rare regions
are infinite in at least one dimension, a stronger effect oc-
curs: each rare region can independently develop a nonzero
steady state density. This leads to a smearing of the global
transition.

The smearing mechanism found here relies only on the

existence of a true phase transition on an isolated rare region.
It should therefore apply not only to the DP universality
class, but to an entire family of nonequilibrium universality
classes for spreading processes and reaction-diffusion sys-
tems. Note that, while the presence or absence of smearing is
universal in the sense of critical phenomena(it depends on
symmetries and dimensionality only), the functional form of
the density and other observables isnot universal, it depends
on the details of the disorder distribution[31]. Smearing phe-
nomena similar to the one found here can also occur at equi-
librium phase transitions. At quantum phase transitions in
itinerant electron systems, even pointlike impurities can lead
to smearing[32]. In contrast, for the classical Ising(Heisen-
berg) universality class, the impurities have to be at least 2D
(3D) for the transition to be smeared, which makes the phe-
nomenon less likely to be observed[33].

In conclusion, extended defects destroy the DP transition
by smearing and lead to a(nonuniversal) exponential depen-
dence of the density and other quantities on the control pa-
rameter. We suggest that this disorder-induced smearing may
be related to the striking absence of DP scaling[11] in at
least some of the experiments.
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